# Learning Trajectories: A research lens for enhancing formative assessment.

Caroline B. Ebby, CPRE, University of Pennsylvania <u>cbe@gse.upenn.edu</u> Marge Petit, Marge Petit Consulting, MPC <u>mpetit@gmavt.net</u>

### Take Aways

- Effective math instruction and planning for instruction requires careful attention to evidence of student thinking.
- Using learning trajectories/progressions to understand evidence of student thinking provides actionable information based on research on how students learn specific mathematics concepts
- The "essence" of formative assessment is the relentless attention to evidence of student understanding and intentional and systematic use of the evidence for planning and instruction. (Popham, 2012)

### Formative Assessment



# Learning Trajectories

- "Learning progressions are descriptions of the successively more sophisticated ways of thinking about a topic that can follow one another as children learn about and investigate a topic" (NRC, 2007, p. 214)
- Developmental progressions of strategies, concepts and levels of student thinking in particular mathematical domains
- Links research on learning and instructional practice

### Formative Assessment





# Looking at Student Work

# Review the samples of student work



# What do you notice? Make some observations



#### Multiplicative Reasoning Framework – Multiplication

Multiplicative Strategies Algorithms Distributive Property Associative Property Doubling & Helving Partial Products Traditional  $4 \ge 16 = 4(10 + 6)$  $(8 \times 2) \times 5 = 8(2 \times 5)$  $16 \times 4 = 8 \times 8$ Aultiplicative 21  $= 8 \times 10$ = 4(10) + 4(6)= 6416 16 <u>x 42</u> 12 = 40 + 24= 80<u>x 42</u> 32 = 6420 640 672 240 Known or Derived Fact Commutative Property Powers of Ten nts may move up and down between multiplicative, transitional, additive, an situations and problem structures (Kouba & Franklin, 1995; VMP OGAP, 2006 400  $5 \times 400 = 5 \times 4 \times 10 \times 10$ Applies understanding of place value, properties, and relationshi  $16 \times 4 = 4 \times 16$  $4 \times 6 = 24$ 672 Transitional Strategies Open Area Model Considers both dimensions of an array or area model Area Model 30 Considers BOTH dimensions of an 20 600 160 arra¥ or area model, (90) 45 + noving away from needing to see every 180 48 collare lini ransitional 38 x 26 = 988  $15 \times 9 = 135$  $6 \times 4 = 24$ Early Transitional Strategies Area Model - 6 x 4 = 24 Skip Counting 3, 6, 9, 12, 15 Skip Counting with Equal groups in an array a Model Building up • • • :• 3 + 3 + 3۰ • ning stu ٠ ٠ Unitizes into groups and sub-groups ng upon the strength of multiplicative reasonin; ative strategies as they interact with diffe arit pr 3 Q 12 15 6+6ĥ 12 Considers only ONE dimension Considers BOTH dimensions of an array or area model of an array or area model Additive Strategies Repeated addition with or without a model - 3 x 4=12 3+3+3+3=12Additive Subitizing in small groups Early Additive Strategies Modeling, counting by ones Modeling, counting Inconsistent Depe by subgroups Grouping  $\odot$ Ø  $\odot$ 3x4 = 12۲ 10 12 Non-Multiplicative Strategies Underlying Issues/Errors Misinterprets the Adds or subtracts factors Uses incorrect operation remainders Doesn't consider - Error in: calculation, place value, Models factors incorrectly Not enough information reasonableness of vocabulary, property or relation-Units inconsistent Guesses Uses procedures incorrectly solution ship, equation, or model or missing

An Example: The OGAP Multiplicative Reasoning Progression

> This is a derivative product of the Vermont Mathematics Pertnership Ongoing Assessment Project (OGAP) which was funded by NSF (EHR-0227057) and the US DOE (S3664020002). © 2012 Marge Petit Consulting, MPC, E. Hulbert, R. Laird. Version 27 January 2013.

### The OGAP Sort



### Instructional Implications





10

### Students move back and forth...



Petit, Laird, Marsden, & Ebby, in press 2015

### CCSSM

| Grade | CCSSM Multiplicative Problem Situations<br>(BOLD = new for grade level)                                                                                                                                                                   | CCSSM Multiplicative Strategies                                                                                                                                                                                                                                                                                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | Equal groups                                                                                                                                                                                                                              | Repeated addition with an array                                                                                                                                                                                                                                                                                                                                                                             |
| 3     | Equal groups, <b>arrays, equal measures,</b><br>beginning area                                                                                                                                                                            | Solve multiplication and division problems<br>using strategies based on place value and<br>properties of operations.                                                                                                                                                                                                                                                                                        |
|       | Multiplication and division within 100 and 1 digit x<br>multiples of 10 (e.g., 5 x 50)                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4     | Equal groups, equal measures,<br>multiplicative comparisons, measurement<br>conversions within systems, area<br>Multiply 1 digit x up to 4 digits, and 2 digits x 2 digits.<br>Divide up to 4 digits by 1 digit numbers.                  | Solve multiplication and division problems<br>using strategies based on place value (e.g.,<br>partial products, area models) and the properties<br>of operations and relationships (e.g.,<br>commutative, associative, and distributive,<br>inverse relationship between multiplication and<br>division).                                                                                                   |
| 5     | Equal groups, equal measures, multiplicative<br>comparisons, <b>measurement conversions</b><br><b>between systems, area, scaling</b><br>(multiplicative change)<br>Fluently multiply whole numbers. Divide up<br>to 4 digits by 2 digits. | Solve multiplication problems using efficient<br>strategies (e.g., partial products, traditional<br>algorithms).<br>Solve division problems using strategies based<br>on place value (e.g., partial quotients, menus,<br>area models) and the properties of operations<br>and relationships (e.g., commutative,<br>associative, distributive, and the relationship<br>between multiplication and division). |

# Learning Trajectory-Oriented Formative Assessment





- Hulbert, E. Petit, & Laird, R. (2013). *Ongoing assessment project: Professional development materials.* Moretown, VT: Ongoing Assessment Project.
- Popham, W. J. (2012). Forward. In E. Wylie, A. Gullickson, K. Cummings, L. Noakes, K. Norman, & S. Veeder (Eds.), Improving formative assessment to empower student learning (pp. ix-xii). Thousand Oaks, CA: Corwin Press.
- Petit, Laird, Marsden, & Ebby (in press 2015). *A Focus on Fractions: Bringing Research to the Classroom*. Routledge, NY, NY.
- Petit, Hulbert, & Laird (2013). *OGAP Multiplicative Reasoning Framework*. Moretown, Vermont.